R&DNOTES

A Group Contribution Molecular Model of Liquids and Solutions Part IV: Group Pair Parameters for 15 Groups

D. E. ECKART D. W. ARNOLD R. A. GREENKORN and K. C. CHAO

School of Chemical Engineering **Purdue University** West Lafayette, IN 47907

The group contribution molecular model of Nitta et al. (1977) describes molecular liquids and their solutions by means of the properties of the structural groups of these molecules. Since a large number of molecules are made up of a relatively few groups. Nitta's model, like other group contribution models, provides a means of making general predictions for large classes of molecular liquids and solutions. Unlike other group contribution models such as the ASOG and UNIFAC, Nitta's model also describes heat of mixing and density of the liquids in addition to activity coefficient.

Nitta et al. reported the properties of four groups: CH3, CH2, CO, and OH. Chien et al. (1981) added the interaction properties of water. Koukios et al. (1984) extended the model to aromatics, cycloparaffins, ethers, and amines. We report here the nitrile CN groups, and the CH and C groups; the two last groups are the branching elements of isomers. A total of 15 groups have been studied, and values of the parameters of all the groups and group pairs that have been determined are presented here for convenient reference. Table 1 presents the individual group properties. The attractive interaction of a group pair is described with up to three parameters. Table 2 presents the dispersive energies ϵ , Table 3 the base associative energies σ^0 , and Table 4 the associative temperature parameter σ^1 . New values are indicated with square brackets in the table entries. Unbracketed numbers represent previously reported values.

The method of determination of the group properties has been described previously (Nitta et al. 1977). The experimental data that were used to find the new group property values are described by Arnold (1980) and Eckart (1984), both of whom also give detailed comparisons of the model-fitting results with the experimental data used.

TABLE 1. INDIVIDUAL GROUP PARAMETERS

		V*				
Formula	Description	cm³/mol	$a_{\scriptscriptstyle K}$	b	c	Q
CH ₃	Methyl	13.46	23.7	0.0	0.338	6.71
CH ₂	Methylene	10.25	23.7	0.0	0.093	4.27
CH	Tertiary aliphatic carbon	[6.71]	[23.7]	[0.0]	[-0.1705]	[1.8]
C	Quaternary aliphatic carbon	[3.33]	[23.7]	[0.0]	[-0.347]	[0.0]
CH _{2,r}	Aliphatic ring element	9.76	21.2	0.167	0.165	4.84
CH _{ar}	Aromatic ring CH	7.98	33.28	0.328	0.0174	3.13
	Aromatic ring C bonded to a side					
C_{ar-al}	chain	5.54	33.28	0.328	-0.127	0.95
CO	Carbonyl	11.6	11.2	0.0	0.147	5.06
O_e	Ethereal oxygen	4.10	55.1	0.0	0.128	1.90
CN	Nitrile	[14.2]	[14.5]	[0.0]	[0.428]	[6.93]
NH ₂	Primary amine	10.76	0.01	0.0	0.218	5.50
OOH	Oxygen in hydroxyl	8.01	39.6	0.0	0.245	3.62
Нон	Hydrogen in hydroxyl	0.0	0.0	0.0	0.0	1.0
WOH	Water-Hydrogen bonds	10.48	55.0	0.0	0.353	4.00
CVT	Water cavities	0.0	0.0	0.0	0.0	2.06

TABLE 2. DISPERSIVE ENERGIES ε_{ij}, kJ/mol*

Group	CH ₃	CH_2	СН	С	$\mathrm{CH}_{2,\mathbf{r}}$	CH _{ar}	C _{ar-al}	CO	O _e	CN	NH ₂	OOH	H_{OH}	WOH	CVT
CH ₃	2.515														
CH_2	2.515	2.515											•		
CH _	[1.937]	[1.912]	[0.293]												
C	[0.0]	[0.0]	[0.0]	[0.0]											
$CH_{2,r}$	2.572	2.572	[1.946]	[0.0]	2.674										
CH _{ar}	3.276	3.276	[2.464]	[0.0]	[3.401]	4.284									
C _{ar-al}	3.276	3.276	[2.464]	[0.0]	[3.401]	4.284	4.284								
CÖ	3.563	3.563	[2.393]	[0.0]	[3.607]	5.732	5.732	6.519							
O.	3.500	3.500	[1.307]	[0.0]	[3.738]	[6.278]	[6.278]	[3.443]	6.532						
CN	3.582	3.582	[3.479]	[0.0]	_	[4.079]	[4.079]	[4.996]		[6.004]					
NH_2	3.092	3.092		[0.0]		[2.710]	[2.710]		_		3.903				
O _{OH}	3.738	3.738	[2.506]	[0.0]	[4.344]	5.012	5.012	6.703	[9.598]	[8.111]	[10.868]	6.887			
H _{oh}	3.738	3.738	[2.506]	[0.0]	[4.344]	5.012	5.012	6.703	[9.598]	[8.111]	[10.868]	6.887	6.887		
WOH	1.845	1.845	[0.249]	[0.0]	[1.540]	[4.321]	[4.321]	11.234	[6.514]	[9.092]	[10.999]	6.519	6.519	6.548	
CVT	3.309	3.309	[0.243]	[0.0]	[3.624]	[4.126]	[4.126]	7.343	[12.117]	[4.590]	[7.479]	6.498	16.673	5.736	3.76

TARLE 3	RASE	ASSOCIATIVE	ENERGIES C	r° kI/mol

Group	CH ₃	CH ₂	СН	С	CH _{2,r}	$\mathrm{CH}_{\mathrm{ar}}$	C _{ar-al}	СО	O _e	CN	NH_2	Оон	Нон	WOH	CVT
CH ₃	0.0														
CH ₂	0.0	0.0													
CH	[0.0]	[0.0]	[0.0]												
C	[0.0]	[0.0]	[0.0]	[0.0]											
$CH_{2,r}$	0.0	0.0	[0.0]	0.0	0.0										
CH _{ar}	0.0	0.0	[0.0]	0.0	[0.0]	0.0									
C_{ar-al}	0.0	0.0	[0.0]	0.0	$\{0.0\}$	0.0	0.0								
CO	0.0	0.0	0.0	0.0	[0.0]	0.052	0.052	2.929							
O _e	0.0	0.0	[0.0]	0.0	[0.0]	$\{0.0\}$	[0.0]	[6.702]	6.540						
CN	0.0	0.0	[0.0]	0.0		[0.929]	[0.929]	[3.403]	_	[2.510]					
NH_2	0.0	0.0		0.0		[1.412]	[1.412]		_	_	2.301				
O_{OH}	0.0	0.0	0.0	0.0	[0.0]	0.0	0.0	0.0	[0.0]	[0.0]	[0.0]	0.0			
H _{OH}	0.0	0.0	0.0	0.0	[0.0]	1.851	1.851	12.761	[12.732]	[9.921]	[5.871]	12.552	0.0		
WOH	0.0	0.0	[0.0]	0.0	[0.0]	[0.010]	[0.010]	0.678	[6.160]	[3.028]	[0.002]	4.937	12.570	7.627	
CVT	0.0	0.0	[0.0]	0.0	[0.0]	[0.0]	[0.0]	0.0	[0.0]	[0.0]	[0.0]	0.0	0.0	0.0	0.0

*Values determined in this work denoted by brackets

TABLE 4. ASSOCIATIIVE TEMPERATURE PARAMETER σ'_{ii}, kJ/mol*

Group	CH_3	CH_2	CH	\mathbf{C}_{-}	CH _{2,r}	CH _{ar}	C _{ar-al}	CO	O_e	CN	NH ₂	O _{OH}	Нон	WOH	CVT
CH ₃	0.0													-	
CH ₂	0.0	0.0													
CH	[0.0]	[0.0]	[0.0]												
C	[0.0]	[0.0]	[0.0]	[0.0]											
$CH_{2,r}$	0.0	0.0	[0.0]	0.0	0.0										
CH _{ar}	0.0	0.0	[0.0]	0.0	[0.0]	0.0									
C _{ar-al}	0.0	0.0	[0.0]	0.0	[0.0]	0.0	0.0								
CO	0.0	0.0	0.0	0.0	[0.0;	0.323	0.323	2.929							
O.	0.0	0.0	[0.0]	0.0	[0.0]	[0.0]	[0.0]	[6.577]	8.763						
CN	0.0	0.0	[0.0]	0.0	_	[1.266]	[1.266]	[0.024]		[3.828]					
NH_2	0.0	0.0	_	0.0		[2.537]	[2.537]	_			4.950				
O _{OH}	0.0	0.0	0.0	0.0	[0.0]	0.0	0.0	0.0	[0.0]	[0.0]	[0.0]	0.0			
Нон	0.0	0.0	0.0	0.0	[0.0]	2.027	2.027	16.192	[36.610]	[11.017]	[24.902]	17.154	0.0		
WOH	0.0	0.0	[0.0]	0.0	[0.0]	[2.594]	[2.594]	1.878	[12.272]	[22.608]	[2.103]	9.920	17.384	15.084	
CVT	0.0	0.0	[0.0]	0.0	[0.0]	[0.0]	[0.0]	0.0	[0.0]	[0.0]	[0.0]	0.0	0.0	0.0	0.0
									. ,	. ,					

*Values determined in this work denoted by brackets

LITERATURE CITED

Arnold, D. W., "A Group Contribution Model for Liquids and Their Mixtures with Experimental Determination of Infinite Dilution Activity Coefficients," Ph.D. Dis., Purdue Univ. (1980).

Chien, C. H., R. A. Greenkorn, and K. C. Chao, "A Group Contribution Molecular Model of Liquids and Solutions. II: Groups and Their Interactions in Water and Aqueous Solutions of Paraffins, Ketones, and Alcohols," AIChE J., 27, 303 (1981).

Eckart, D. E., "Implementation of a Group Contribution Thermodynamic Model," M.S. Thesis, Purdue Univ. (1984).

Koukios, E. G., et al., "A Group Contribution Molecular Model of Liquids and Solutions. III: Groups and Interactions in Aromatics, Cycloparaffins, Ethers, Amines, and Their Solutions," AIChE J., 30, 662 (1984).

Nitta, T., et al., "A Group Contribution Molecular Model of Liquids and Solutions," AIChE J., 23, 144 (1977).

Manuscript received Feb. 7, 1985, and revision received Mar. 30, 1985.